
222 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 7, NO. 2, JUNE 1999

Hierarchical Finite-State Machines and
Their Use for Digital Control

Valery Sklyarov

Abstract—This paper discusses the behavioral description, logic
synthesis, and practical use of control units modeled as hierar-
chical finite-state machines with virtual states. The technique
considered here provides a natural mechanism for top-down
decomposition and enables us to develop any complex control
algorithm step-by-step, where, at each stage, we are only dealing
with a particular level of abstraction. Within any level, the
specification encapsulates the control data and functions and
allows recursive calls. Finally, the approach enables control units
to be designed such that they incorporate new properties such as
flexibility and extensibility. The primary functional components
of a control algorithm can be reused in future applications.

Index Terms—Hierarchical finite-state machine, hierarchical
specification, logic synthesis, modifiable control algorithm, recur-
sive calls.

I. INTRODUCTION

T HERE ARE many kinds of devices that can be decom-
posed into adatapathandcontrol unit[1], [2]. A datapath

consists of storage units and combinational or functional units.
A control unit performs a set ofinstructionsby generating the
appropriate sequence ofmicro instructionsthat depends on
intermediatelogic conditionsor on intermediate states of the
datapath.

In order to describe the behavior of a control unit, we
can apply various forms of behavioral models [1]–[4]. We
will use hierarchical graph schemes (HGS’s) [5]–[7] for this
purpose, which have the following formal description [5]. An
HGS is a directed connected graph containing rectangular and
rhomboidal nodes. Each HGS has one entry point, which is a
rectangular node calledBegin, and one exit point, which is a
rectangular node calledEnd. Other rectangular nodes contain
either micro instructionsor macro instructions, or both. Any
micro instruction includes a subset ofmicro operations
from the set . A micro operationis an output
signal, which causes a simple action in the datapath. Any
macro instructionincorporates a subset ofmacro operations
from the set . Each macro operationis
described by another HGS of a lower level. We assume that
each macro instruction includes just one macro operation. Each
rhomboidal node contains one element from the set ,
where is the set of logic conditions,

Manuscript received June 16, 1997; revised December 15, 1997 and March
30, 1998.

The author is with the Department of Electronics and
Telecommunications/INESC-Aveiro, University of Aveiro, 3810 Aveiro
Portugal.

Publisher Item Identifier S 1063-8210(99)02609-8.

and is the set oflogic functions. A logic
conditionis an input signal, which communicates the result of
a test. Eachlogic function is calculated by performing some
predefined set of sequential steps that are described by an HGS
of a lower level. Directed lines (arcs) connect the inputs and
outputs of the nodes in the same manner as for an ordinary
graph scheme [2].

Consider a set . Each element
corresponds to an HGS , which specifies either an

algorithm for performing (if) or an algorithm for
calculating (if). Let us assume that is the
subset of macro operations and is the subset of logic
functions that belong to the HGS . If ,
we have an ordinary graph scheme [2].

Using HGS’s enables us to develop any complex control
algorithm step-by-step, concentrating our efforts at each stage
on a specified level of abstraction (i.e., on a particular element
of the set). Each component of the set is usually very
simple and can be checked and debugged independently.
Fig. 1 shows an algorithm described by HGS’s (the
symbols will be used later).

The execution of an ordinary graph scheme based on a
special traversal procedure was considered in [2]. We will use
a similar approach that differs only in the interpretation of new
complex operations such as and .
Each complex operation that is described by a separate HGS

has to be replaced with a new subsequence of operators
that produces the result of executing.

The main objective of this paper is to develop an approach
to the design of virtual control devices that ensures that they
have the properties of extensibility, flexibility, and reusability.
It differs from other related work [8], [9], etc. in two basic
directions. They are: 1) exploring a new method for the
synthesis of control devices from a given set of HGSs and
2) developing a formal technique, which, on the one hand,
ensures a correct implementation even in case of recursive
calls and, on the other hand, allows benefits to be obtained
from encapsulation in the hierarchical specification.

This paper is organized in seven sections. Section II dis-
cusses the hierarchical finite-state machine (HFSM), which has
been proposed as a formal model of digital devices whose
behavior is described by HGS’s. Section III introduces an
HFSM with virtual states. Section IV describes all the steps for
HFSM synthesis. Sections V and VI explain the advantages of
virtual HGS’s, demonstrate their use for practical applications,
and present the results of experimental tests. A conclusion is
then presented in Section VII.

1063–8210/99$10.00 1999 IEEE

SKLYAROV: HFSM’S AND THEIR USE FOR DIGITAL CONTROL 223

Fig. 1. Description of a control algorithm by HGS’s.

II. HFSM

For a given set of HGS’s, consider an undirected graph
[7], which shows a number of hierarchical levels and has

a tree structure. The root of the tree corresponds to the
main HGS of level 1. The leaves of the tree correspond to
HGS’s, which do not contain elements from the set(they are
ordinary graph-schemes [2]). Consider the following sequence
of HGSs: (level 1) (HGS’s of level 2) (HGS’s
of level 3) , where is a subset of the HGS’s that are
used to describe elements from the set , is
a subset of the HGS’s that are used to describe elements from
the sets and . The same approach
can be used to determine other subsets (, , etc.). Fig. 2(a)
shows the graph to be built for the set of HGS’s given
in Fig. 1.

For nonrecursive control algorithms, graph can exhibit
the maximum number of possible sequential calls of HGS’s.
However, for recursive algorithms, the depth of is infinite.
Consider another directed graph , which can be constructed
for any control algorithm and enables us to eliminate possible
future problem that might appear as a result of an infinite
number of recursive calls. The has vertices correspond-
ing to the elements . Any vertex is connected
by directed lines to all vertices from the subset. Fig. 2(b)
depicts the graph to be built for the set of HGS’s given
in Fig. 1. If is an acyclic graph, the respective control
algorithm is nonrecursive [6] and the maximum number of
transitions is equal to the longest path on the graph. If

Fig. 2. GraphGh. (a) Utilizing the stack memory. (b) Deciding the required
size of the stack memory. (c), (d) Examples of recursive calls.

is a cyclic graph [see examples in Fig. 2(c) and (d)] the
control algorithm is recursive and the problem becomes more
complex. In this case, an HGS may call itself directly [see
Fig. 2(c)] or indirectly [see Fig. 2(d)]. Recursion brings the
same problem here as it does in software engineering, i.e., the
process of repeated calls might be infinite. However, recursive
algorithms are very often more compact and might be easier to
design and understand than the nonrecursive equivalents. For a
correct recursive algorithm, the problem is resolving step-by-
step in such a way that we will finally reach a step where the
recursive cycle will be broken, i.e., the next sub-steps will not
be recursive. In this case, the number of hierarchical levels
is finite. The algorithm can be implemented in hardware with
a given stack memory if , where is the number
of registers in the stack memory. The problem is how to
find out the value of . If is an acyclic graph, finding
the longest path of [1] can give a solution. For instance,
double arrow lines in Fig. 2(b) show the longest path. If
is a cyclic graph, we have to examine the control algorithm
together with the relevant datapath. In the general case, this
problem cannot be solved theoretically because the datapath
might receive data from other resources in the system, which
might be unknown. However, for many practical applications,
it is feasible to specify some constraints, such as the maximum
number of data records that can be handled, etc.

In Fig. 2(a), , ,
, , and is the main part

of the algorithm. Micro operations and are used to
increment and to decrement, respectively, the stack pointer
(sp). The problem of switching to various levels can be
efficiently resolved using an HFSM with astack memory[5],
[6] (see Fig. 3). At the beginning, the top of the stack is
the register that is used as the HFSM memory for the HGS

Suppose it is necessary to perform an algorithm for a
component . In this case, we increment
the sp by activating a special micro operation and set the
new register that is now located on the top of the stack into
the first state for . As a result, the previous top register of
the stack stores the interrupted state of and the new top
register of the stack stores the state of the entry point for.

224 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 7, NO. 2, JUNE 1999

Fig. 3. Basic structure of the HFSM.

The same sequence of steps can be applied to other levels.
The total size of the stack is determined in such a way that
the correctness of hierarchical control algorithm is assured.
When the execution of an HGS of level is terminated, we
will perform the reverse sequence of steps to return back to
the interrupted HGS. In this case, we decrement the sp by
activating a special micro operation .

The stack memory is used to keep track of the calls of any
macro operations (logic functions). The code converter (CC)
has an input register which stores values of ,
where is the minimum number of bits required to represent
the binary codes for the HGS’s for a given control algorithm
(see Section IV for details). The values of
are the bits for the code to select the HGS to be executed
next. This code is converted to produce the first state of

, which appears on the outputs . Here
(is the

logic OR operation).
If there are no transitions from one HGS to another, the

HFSM operates like an ordinary finite-state machine (FSM). If
it is necessary to call a new HGS in order to perform either
a macro operationor a logic function, the following sequence
of actions will be carried out. The code
of the is generated and stored in the input register of the
block CC. Let us agree for simplicity that is the binary
code of and , is a don’t care
value. The sp is incremented and, as a result, a new
register of the stack memory will be selected as the
current register of the HFSM. The previous register
stores the state of the HFSM when it was interrupted. The
code is converted to the code of the first state of the
HGS , which is generated on the outputs
of the block CC (at this time). Now
the HGS is responsible for control from this point until
it is terminated. After termination of , the micro operation

is generated in order to return to the interrupted state.
As a result, control is passed to the state in which we called the
HGS . The subsequent actions are performed in the same
manner as for an ordinary FSM.

Outputs and affect
required transitions in different periods of time. That is why we

need eitherOR (wired OR) or XOR operation for the transition
functions

It should be mentioned that we do not change the definition
of the FSM [1], [2]. It may be defined as a sextuple vector

, where —is a finite
set of states, is an initial state,
is a finite set of input vectors,

—is a finite set of output vectors,
is a

transition function, mapping a subset onto a subset
of . This function defines a next state
depending on the current state , and an input vector

is an output function,
which allows us to define output vectors from the set .
HFSM can be described as follows:

However, because and are calculated for the current
state , we can formally convert these equations to the
equations considered above. As a result, we can describe a
control algorithm by a set of HGS’s and then convert the
given description to a state transition table which we can use to
synthesize the combinational scheme (see Fig. 3) by invoking
known methods of logic synthesis. After that, we can connect
the combinational scheme to the predefined blocks such as the
CC and the stack memory. Thus, we will design an HFSM
which behaves in accordance with the given description.

The stack memory is used to manage the hierarchy and
does not affect transitions. When we want to generate a macro
operation in a state , we activate the increment micro
operation . As a result, we select the next level of the stack
and set the new register to the first stateof . In this case,

is a
conversion function .
Finally, the next state depends on the current state ,
and a current input vector . When the macro operation

is terminated, we generate the decrement micro operation
. As a result we select the previous level of the stack which

contains the state . In this case, we perform an ordinary
transition .

It should be mentioned that a stack memory is also widely
used in the hardware implementation of subroutine calls in
ordinary computers. However, in this case, it mainly keeps
track of the calls and it does not manipulate the currently active
states of any executable procedure. A program counter handles
these states. In case of an HFSM, the stack registers play
an active role in the execution of the control algorithm, i.e.,
they take part in state transitions. The technique considered
allows the stack memory to be affected in the same manner
as for an ordinary FSM, i.e., the hierarchical specification
does not require any explicit definition of the operations for
a hierarchical implementation. The process of stack memory
management is common for any HFSM and the same stack is
shared among multiple communicating HGS’s. This process
is hidden and is supported by local logic incorporated into the

SKLYAROV: HFSM’S AND THEIR USE FOR DIGITAL CONTROL 225

primary components (see Fig. 3) and reused for any control
circuit.

It should be noted that compared to an ordinary FSM,
an HFSM has a more complicated synchronization. Actually,
there are many acceptable kinds of synchronization, and we
want to suggest just one of them [7]. The selection of the
proper HGS can only be done in states containing macro
operations and logic functions. In states where a new HGS
is selected, all outputs (see Fig. 3) are set to
zero. In states where a previously called HGS is terminated,
all outputs are set to zero. The sp can only
be decremented in a single specially allocated state. The
outputs and can only be generated in different states.
At the beginning, we provide initial settings of all registers to
zero. Fig. 3 illustrates possible waveforms for discrete synch
signals according to the mode we have just considered.

III. A N HFSM WITH VIRTUAL STATES

In Section II, we assumed a preliminary binding between
HGS’s in a given set. This means that all links between
different HGS’s have been resolved during the process of the
control-unit synthesis. The block CC has been programmed to
convert the codes to the initial states of
the HGS’s In order to provide extensibility, flex-
ibility, and reuse of the scheme in Fig. 3, we have to exclude
hardwired links between relatively independent components of
the control algorithm, such as the HGS’s.

In order to provide links that we can alter, let us introduce
virtual macro operations (logic functions) that overcome the
problem of preliminary linkage by allowing the control unit
to define a macro operation during synthesis, and redefine it
later if necessary, after the control unit has been designed.
Borrowing some of the ideas of object-oriented programming
[4], we can even consider the possibility of pure virtual macro
operations, which have not been implemented during synthesis
at all (however, we can implement them later). They are
described by an HGS containing just two nodes following
each other:Begin and End.

If we want to provide dynamic binding, the block CC will
have the structure of random access memory (RAM). A virtual
macro operation , to be indicated by the superscript, is
described by a virtual HGS. It denotes that we are not able
to predict and, as a result, to hardwire a direct link between

and the proper HGS. Depending on a particular situation,
for a given , we can execute one of many different HGS

. A concrete binding is resolved after the HFSM
has been designed. In order to provide hardware support for
it, we have introduced an HFSM withvirtual states. A state is
called virtual if the hierarchical transition(s) from it have not
been fixed in the given HGS.

IV. SYNTHESIS OF AN HFSM

The problem of synthesis is as follows. For given control
algorithm , described by the set of HGS’s, construct the FSM
that implements . Consider how to solve this problem for a
Moore machine.

The synthesis includes the following steps:

1) transforming the HGS’s to astate transition table;
2) state encoding;
3) combinational logic optimization and design of the final

scheme.

The first step is divided into three sub steps, which are: 1)
marking the HGS’s with labels; 2) recording all transitions
between the labels in theextended state transition table; and
3) converting the extended table to ordinary form [2].

In order to mark given HGS’s, it is necessary to do the
following (see Fig. 1). The label is assigned to the node
Begin and to the nodeEnd of the HGS . The label
is assigned to all nodesEnd of the HGS’s . The
labels are assigned to: 1) unmarked rectangular
nodes in all HGSs; 2) inputs of rhomboidal nodes with logic
functions, which directly follow either other rhomboidal nodes
or rectangular nodes with macro operations; 3) theBeginnodes
of the HGS’s connected to a rhomboidal node
with logic condition; and 4) the input of a rhomboidal node
with a logic condition, which follows a connection from the
Beginnode of the HGS . Repeating labels (apart from)
in different HGS’s is not allowed.

Now, the labels are considered to be HFSM
states. In order to build the extended state transition table, it
is necessary to perform the following actions. Record all tran-
sitions , where

is a product
of input variables (logic conditions) and logic functions,
which causes the transition from to . For any uncon-
ditional transition, . Record all transitions

where is the label for a node (for an input)
to which there is a direct connection from theBeginnode of
the HGS , is a node (input of a node) containing the
element , is the label for a node, which starts the HGS
for the element . Write down the micro operations
and macro operations generated in the rectangular node
marked with the label . Record the transitions considered
in the extended table.

In order to convert the table from an extended to an ordinary
form, it is necessary to do the following. Encode the HGS’s

. Suppose for simplicity that the code of
the HGS is the binary value of with minimal length .
If a set contains a macro operation , then
it has to be replaced with new output variables that are
and . We are only choosing variables
for which (the is a value of the bit number in
the code of . Suppose is an input label of a rhomboidal
node. If the node contains a logic function , we must
add and the respective variables to the
set . If an input of the rhomboidal node containing
a logic function has not been marked, we must add
and the respective variables to the sets

where the states have been
inserted to mark the nodes that are the predecessors of the
considered rhomboidal node with the logic function. The
calculated value of a logic function is stored in a specially
allocated storage element and then used as a normal logic

226 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 7, NO. 2, JUNE 1999

condition. The final table describes the hierarchical transitions
implicitly and can be visualized as an ordinary table.

In order to program the CC, we have to perform the follow-
ing steps. Record the transition from the stateassigned to
the Begin node of the HGS . For our example in Fig. 1,
this is . We put the name of HGS that is
the owner of the state in parentheses. Record all transitions
between different HGS’s. For our example in Fig. 1, they are

, , , ,
, , ,

, . For all transitions
considered above, convert to . If we assume for
simplicity that the code of is the binary value of the
index with minimal length , then our
conversions are as follows: ,

, ,
,

, . For all ,
the block CC converts to . Now we can synthesize
the complete scheme of the HFSM using known methods ([1],
[2], etc.).

V. VIRTUAL HGS’S AND THEIR USE FORPRACTICAL

APPLICATIONS

Suppose that all elements of the set are
virtual, which means that all the given HGS’s are
also virtual. As a result, we can call different versions of macro
operations (logic functions) from the same point of an HGS.

There are two acceptable and reasonable ways in which the
binding of any modifiable connection might be established.
These are before run time and during run time. The first kind
of binding is called static because it is established outside the
scope of dynamic physical control. Applying static binding
limits the future potential for modifications of predefined
control algorithms. Dynamic binding establishes links during
run time. This means that while one HGS is executing, another
HGS might be either being modified or replaced. Any two
HGS’s can be swapped by setting a new entry point in the
RAM-based CC.

Let us have a look at an example that demonstrates the
advantages of the proposed architecture, such as capability for
recursive calls, as well as the extensibility and flexibility.

Consider a binary tree whose nodes contain three fields that
are a pointer to the right child node, a pointer to the left child
node, and a value (let us say an integer or a pointer to a
string). The nodes are maintained so that, at any node, the left
sub-tree contains only values that are less than the value at
the node, and the right sub-tree contains only values that are
greater (see [10] for details). All nodes are accommodated in
RAM (see Fig. 4) and we want to design hardware that can
be customized to solve one of the following problems:

1) determining the maximum value;
2) determining the minimum value;
3) sorting the values in descending sequence;
4) sorting the values in ascending sequence.

One potential implementation is shown in Fig. 4.

Fig. 4. Hardware implementation for operations using a binary tree.

Fig. 5. HGS’s specifying the control unit in Fig. 4.

Consider the set of HGS’s depicted in Fig. 5. The first
HGS can perform various operations (they are indicated
by zigzags in Fig. 5). When required, it calls an HGS
via the virtual macro operation . The latter might have
several different implementations, such as: 1) for finding
a maximum value; 2) for finding a minimum value; and
3) and for finding the ordered sequence of values from
maximum to minimum or vice versa. All HGS’s are
recursive. A single logic condition allows to find the nodes
that do not point to other nodes. Micro operations
force the following actions in the datapath:

push data onto the local stack;
calculate an address of the left node from the currently
active node;
push data onto the output stack;
form the address of the right node from the currently
active node;
pop data from the local stack and store it in the register;
pop data from the output stack to external output
(see Fig. 4).

SKLYAROV: HFSM’S AND THEIR USE FOR DIGITAL CONTROL 227

Fig. 6. (a) Binary tree for our example. (b) Example of contents of RAM
in Fig. 4. (c) Waveforms illustrating how to find the maximum value. (d)
Waveform illustrating how to find the minimum value.

In order to define the size of the stack memory that is
used for the control circuit, we have to set some predefined
constraints for the datapath in Fig. 4, such as the maximum
permitted path from the root of the binary tree. If this is
either problematical or unclear, it is reasonable to specify an
exception, such as stack overflow, and an HGS that will handle
this exception (see the HGS in Fig. 5).

The entry point of is permanently attached to the level
of the stack. Any attempt to reach this level causes an

exception to be thrown, i.e., the HGS will be automat-
ically executed. It might set a special indicator (see micro
operation in Fig. 5) asking what to do. The higher level
control system tests this indicator and responds through logic
conditions specified within the HGS (see rhomboidal
nodes , , in Fig. 5). This information is used
to perform actions that allow the system to cope with the
problem, which, for instance, could be any of the follow-
ing:

1) set the stack to the initial state;
2) extend the stack and continue the task;
3) switch to a new stack memory and restart the task,

indicate an unrecoverable error, etc.

The scheme in Fig. 4 was described in the VHDL language.
The results of the simulation for the binary tree, depicted in
Fig. 6(a), are shown in Figs. 6 and 7. Suppose that for given
set , , , the desired HGS has to be selected
during run time, depending on what operation we want. In
order to do this, we can dynamically modify the given control
algorithm, i.e., the macro operation will be associated with
the appropriate HGS during the execution of the HGS. In
addition, we can extend the set on the fly if necessary by
reconfiguring our scheme with the aid of a high-level control
system.

In order to accomplish the required modification, we can
use two different techniques. In the first case, during synthesis
we provide direct mapping of HGS’s to modifiable elements
(ME’s) (see the left-hand side and bottom of Fig. 8) that
are either reconfigurable, such as components implemented

(a)

(b)

Fig. 7. (a) Waveforms illustrating the results of sorting values in ascending
sequence and (b) in descending sequence.

Fig. 8. Dynamic modifications of the control algorithm.

within an FPGA, or reprogrammable, such as elements with
a regular matrix structure. If we want to modify/replace any
HGS (e.g., the right-hand-side bottom HGS in Fig. 8), we have
to modify/replace the associated ME (i.e., we might replace

with in Fig. 8).
In the second case, the direct mapping considered above

has not been provided. However, we can implement all the
required additional HGS’s in hardware (see the right-hand side
of Fig. 8). If we want to replace an HGS, we load a new entry
state for the new HGS in the CC (see the right-hand side of
Fig. 8).

Finally, the approach considered gives the following ad-
vantages. It enables flexibility and extensibility in the control
algorithm and makes it possible for previously constructed
HGS’s and previously designed HFSM’s to be reused [11].
It provides an exception handling mechanism. At least two
kinds of exceptions have to be taken into account: errors and
reload conditions. The latter enables us to support execution of
virtual algorithms, i.e., the capability to reload HGS’s during
run time.

228 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 7, NO. 2, JUNE 1999

TABLE I
EXPERIMENTAL RESULTS

VI. EXPERIMENTAL TESTS

The proposed architecture of an HFSM (see Fig. 3) was
described in VHDL and has been carefully examined for
different control algorithms (we used the V-system VHDL
analyzer). The results of the test have proven that the target
requirements of the HFSM, such as extensibility, flexibility
and reuse, have been satisfied. The best results were obtained
for recursive algorithms. Since the proposed technique enables
us to convert a given set of HGS’s to an ordinary state
transition table, we can further apply a variety of known
methods of logic synthesis. Consequently, after the first step
(see Section IV), we can use any synthesis tool that is available
for an ordinary FSM with the same time constraint and
memory requirement. The first synthesis step was carefully
tested (see Table I, whereis the number of inputs, is the
number of outputs, and is the number of macrooperations
and logic functions). For all examples from Table I, the time
for step 1 did not exceed 1 s on a 200-MHz PC Pentium.
In the last column, we have shown the size of alterable part
of combinational scheme (see Fig. 3) of an HFSM in gate
equivalents, such as components of Xilinx PRIMS library
for FPGA XC6200 (steps 2 and 3 were carried out using
methods similar to [2]). For one example, the size of stack
can be determined only at execution time and an HFSM has
an exception handler (it is denoted in Table I by exc). Gaining
the advantages considered above gave rise to a number of
supplementary tasks, which required additional time and effort.
For example, it was necessary to determine the size of stack, to
design the additional HGS’s that provide exception handling,
etc. It should also be noted that the size of the stack memory
is larger than the size of the register for an ordinary FSM,
especially when we use recursive calls. However, the size of
the combinational part is usually smaller and the best results
were obtained when recursive calls were used. Actually, the
latter can also be emphasized as a significant advantage of the
proposed architecture.

VII. CONCLUSION

We have attempted to develop an approach to the synthesis
of an FSM based on a hierarchical behavioral specification.
The proposed technique can be used to design a wide range of
control devices and it provides them with such characteristics

as extensibilityand flexibility. The developed model directly
supports top-down decomposition and allows recursive and
incompletely specified calls. The entire control algorithm is
described by a set of HGS’s that can be reused. In general,
each of themencapsulatesthe control data and control func-
tions. Encapsulation allows us to separate the purpose of an
operation (function) from its implementation. In other words,
we can focus on what the operations do instead of on how
to implement them. Providing control algorithms with virtual
operations (with virtual HGS’s) enables us to set up actual
links dynamically during run time. This makes it possible to
construct dynamically modifiable control circuits. If a virtual
operation is made pure, we obtain an incomplete specification,
which essentially simplifies the testing and debugging of
sophisticated algorithms.

REFERENCES

[1] G. De Micheli, Synthesis and Optimization of Digital Circuits. New
York: McGraw-Hill, 1994.

[2] S. Baranov, Logic Synthesis for Control Automata. Norwell, MA,
Kluwer, 1994.

[3] S. Edwards, L. Lavagno, E. A. Lee, and A. Sangiovanni-Vincentelli,
“Design of embedded systems: Formal models, validation and synthe-
sis,” Proc. IEEE, vol. 85, pp. 366–390, Mar. 1997.

[4] G. Booch,Object-Oriented Analysis and Design, 2nd ed. New York:
Benjamin, 1994.

[5] V. Sklyarov “Hierarchical graph-schemes,” Latvian Academy of Sci-
ence,Automatics and Comput., no. 2, pp. 82–87, 1984.

[6] , Synthesis of Finite State Machines Based on Matrix LSI. Minsk,
Belarus: Science and Technique, 1984.

[7] V. Sklyarov, A. Adrego da Rocha, “Sintese de unidades de controlo
descritas por grafos dum esquema hierarquicos,”Electrón. Telecomun.,
vol. 1, no. 6, pp. 577–588, 1996.

[8] J. E. Vuillemin, P. Bertin, D. Roncin, M. Shand, H. H. Touati, and
P. Boucard, “Programmable active memories: Reconfigurable systems
come of age,”IEEE Trans. VLSI Syst., vol. 4, pp. 56–69, Mar. 1996.

[9] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A.
Shtull-Trauring, and M. Trakhtenbrot, “Statemate: A working environ-
ment for the development of complex reactive systems,”IEEE Trans.
Software Eng., vol. 16, pp. 403–414, Apr. 1990.

[10] B. W. Kernighan and D. M. Ritchie,The C Programming Language.
Englewood Cliffs, NJ: Prentice-Hall, 1988.

[11] R. C. Martin,Designing Object-Oriented C++ Applications Using the
Booch Method. Englewood Cliffs, NJ: Prentice-Hall, 1995.

Valery Sklyarov received the Engineering degree
from the Technical University—UPI, Uljanovsk,
Russia, in 1972, the Ph.D. degree in computer
science from the Technical University—BSUIR,
Minsk, Belarus, in 1978, and the Doctor of Science
degree in computer science from the Technical
University—LETI, St. Petersburg, Russia, in 1986.

From 1972 to 1978, he was with the Research
Institute, Minsk, Belarus, where he became Project
Leader of the Design Peripheral Devices Group.
From 1978 to 1994, he was with the Belorussian

State University of Informatics and Radioelectronics (formerly the Minsk
Radioengineering Institute), Belarus, as an Associate Professor, and from
1987 onwards, as Full Professor and the Head of the Computer Science
Department. He is currently a Full Professor of computer engineering in the
Department of Electronics and Telecommunications, University of Aveiro,
Aveiro, Portugal. He has also been teaching and researching at Bialystok
University, Poland, and Kassel University, Germany. He has authored and
co-authored 17 books on subjects which include finite-state machine theory,
computer-aided design (CAD), computer architecture, operating systems, and
programming. His research interests include finite-state machine theory and
object-oriented programming, with particular emphasis on their application
to problems in logic synthesis and optimization.

