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Hierarchical Finite-State Machines and
Their Use for Digital Control

Valery Sklyarov

Abstract—This paper discusses the behavioral description, logic and © = {6,,---,6,} is the set oflogic functions A logic
synthesis, and practical use of control units modeled as hierar- conditionis an input signal, which communicates the result of
chical finite-state machines with virtual states. The technique a test. EacHogic functionis calculated by performing some

considered here provides a natural mechanism for top-down . . .
decomposition and enables us to develop any complex control predefined set of sequential steps that are described by an HGS

a|gorithm Step_by_step, Where’ at each stage’ we are 0n|y dea“ng Of a |0Wer IeVeI. DireCted |ineS (arCS) connect the inputs and
with a particular level of abstraction. Within any level, the outputs of the nodes in the same manner as for an ordinary
specification encapsulates the control data and functions and graph scheme [2].

allows recursive calls. Finally, the approach enables control units Consider a seE = Z U © = {ey,---,ey}. Each element
- - ) ) .

to be designed such that they incorporate new properties such as . . .
flexibility and extensibility. The primary functional components €% € E corresponds to an HGB;, which specifies either an

of a control algorithm can be reused in future applications. algorithm for performinge;, (if ;, € Z) or an algorithm for
: . - . : . calculatings;, (if £, € ©). Let us assume that(I';,) is the
Index Terms—Hierarchical finite-state machine, hierarchical

specification, logic synthesis, modifiable control algorithm, recur- SUPSet of macro operations a&i(l;) is the subset of logic
sive calls. functions that belong to the HGIS,. If Z(T',)UO(T};,) = &,

we have an ordinary graph scheme [2].
Using HGS'’s enables us to develop any complex control
algorithm step-by-step, concentrating our efforts at each stage
HERE ARE many kinds of devices that can be deconon a specified level of abstraction (i.e., on a particular element
posed into alatapathandcontrol unit[1], [2]. A datapath of the setF). Each component of the sét is usually very
consists of storage units and combinational or functional unigmple and can be checked and debugged independently.
A control unit performs a set afistructionsby generating the Fig. 1 shows an algorithm described by HGBis - - -, I'g (the
appropriate sequence aficro instructionsthat depends on symbolsay, - - -, asg Will be used later).
intermediatelogic conditionsor on intermediate states of the The execution of an ordinary graph scheme based on a
datapath. special traversal procedure was considered in [2]. We will use
In order to describe the behavior of a control unit, wa similar approach that differs only in the interpretation of new
can apply various forms of behavioral models [1]-[4]. Weomplex operations such ag = z, € Z andey, = 6; € O.
will use hierarchical graph schemes (HGS’s) [5]-[7] for thi€ach complex operation, that is described by a separate HGS
purpose, which have the following formal description [5]. Ad*;, has to be replaced with a new subsequence of operators
HGS is a directed connected graph containing rectangular ghdt produces the result of executihy.
rhomboidal nodes. Each HGS has one entry point, which is aThe main objective of this paper is to develop an approach
rectangular node calleBegin and one exit point, which is ato the design of virtual control devices that ensures that they
rectangular node callefind. Other rectangular nodes contairhave the properties of extensibility, flexibility, and reusability.
either micro instructionsor macro instructionsor both. Any It differs from other related work [8], [9], etc. in two basic
micro instructionY; includes a subset ofmicro operations directions. They are: 1) exploring a new method for the
from the set” = {y1,---,yn}. A micro operationis an output synthesis of control devices from a given set of HGSs and
signal, which causes a simple action in the datapath. A&y developing a formal technique, which, on the one hand,
macro instructionincorporates a subset ofiacro operations ensures a correct implementation even in case of recursive
from the setZ = {z,---,zg}. Eachmacro operationis calls and, on the other hand, allows benefits to be obtained
described by another HGS of a lower level. We assume tHaim encapsulation in the hierarchical specification.
each macro instruction includes just one macro operation. EaciThis paper is organized in seven sections. Section Il dis-
rhomboidal node contains one element from the $etl ©, cusses the hierarchical finite-state machine (HFSM), which has
where X = {x1,---,z5} is the set oflogic conditions been proposed as a formal model of digital devices whose
behavior is described by HGS'’s. Section Il introduces an
_ _ _ HFSM with virtual states. Section IV describes all the steps for
30"\"5353”'” received June 16, 1997; revised December 15, 1997 and Mg g\ synthesis. Sections V and VI explain the advantages of
The author is with the Department of Electronics and/irtual HGS'’s, demonstrate their use for practical applications,
Telecommunications/INESC-Aveiro, University of Aveiro, 3810 Aveirognd present the results of experimental tests. A conclusion is
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Fig. 2. GraphGy,. (a) Utilizing the stack memory. (b) Deciding the required
size of the stack memory. (c), (d) Examples of recursive calls.

G, is a cyclic graph [see examples in Fig. 2(c) and (d)] the
control algorithm is recursive and the problem becomes more
complex. In this case, an HGS may call itself directly [see
Fig. 2(c)] or indirectly [see Fig. 2(d)]. Recursion brings the
same problem here as it does in software engineering, i.e., the
process of repeated calls might be infinite. However, recursive
algorithms are very often more compact and might be easier to
design and understand than the nonrecursive equivalents. For a
correct recursive algorithm, the problem is resolving step-by-
step in such a way that we will finally reach a step where the
recursive cycle will be broken, i.e., the next sub-steps will not
be recursive. In this case, the number of hierarchical levels
Il. HFSM is finite. The algorithm can be implemented in hardware with

For a given set of HGS's, consider an undirected graghgiven stack memory itr < X%, where X is the number
G, [7], which shows a number of hierarchical levels and ha¥ registers in the stack memory. The problem is how to
a tree structure. The root of the tree corresponds to thefind out the value ofs. If G, is an acyclic graph, finding
main HGSI'; of level 1. The leaves of the tree correspond tthe longest path o7, [1] can give a solution. For instance,
HGS's, which do not contain elements from the Bgtthey are double arrow lines in Fig. 2(b) show the longest pathGlf
ordinary graph-schemes [2]). Consider the following sequenisea cyclic graph, we have to examine the control algorithm
of HGSs:I'; (level 1)= I'? (HGS's of level 2)=I"* (HGS’s together with the relevant datapath. In the general case, this
of level 3)= ..., whereI'? is a subset of the HGS’s that areproblem cannot be solved theoretically because the datapath
used to describe elements from the gt;) U ©(I';), I'* is  might receive data from other resources in the system, which
a subset of the HGS's that are used to describe elements franght be unknown. However, for many practical applications,
the setsU,cr= Z(vy) and U,cr= ©(y). The same approachit is feasible to specify some constraints, such as the maximum
can be used to determine other subsEts I'®, etc.). Fig. 2(a) number of data records that can be handled, etc.
shows the grapl@), to be built for the set of HGS’s given In Fig. 2(a),['? = {I'5,I'5,I's}, I'® = {['3,'y, 5,6},
in Fig. 1. I'* = {['4,5,T6}, I'° = {['c}, andm = z; is the main part

For nonrecursive control algorithms, graph, can exhibit of the algorithm. Micro operationg™ and y~ are used to
the maximum number of possible sequential calls of HGS'®icrement and to decrement, respectively, the stack pointer
However, for recursive algorithms, the depth@@f is infinite. (sp). The problem of switching to various levels can be
Consider another directed gragh,, which can be constructed efficiently resolved using an HFSM with siack memory5],
for any control algorithm and enables us to eliminate possij&] (see Fig. 3). At the beginning, the top of the stack is
future problem that might appear as a result of an infinitke register that is used as the HFSM memory for the HGS
number of recursive calls. Th&., hasH vertices correspond- I';. Suppose it is necessary to perform an algorithm for a
ing to the element$';,---,I'y. Any vertexI';, is connected components;, € Z(I';) U ©(I'1). In this case, we increment
by directed lines to all vertices from the sub$®t Fig. 2(b) the sp by activating a special micro operatigh and set the
depicts the graplt;., to be built for the set of HGS’s given new register that is now located on the top of the stack into
in Fig. 1. If &, is an acyclic graph, the respective contralhe first state fod’;,. As a result, the previous top register of
algorithm is nonrecursive [6] and the maximum number dhe stack stores the interrupted statel'gf and the new top
transitionso is equal to the longest path on the gra@h. If  register of the stack stores the state of the entry pointfor

Fig. 1. Description of a control algorithm by HGS's.
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X Xy, need eitheioR (wired OR) or XOR operation for the transition
‘ ’ ‘ functions Dy, -- -, Dg.

‘ It should be mentioned that we do not change the definition
l l f )ﬁjn |, of the FSM [1], [2]. It may be defined as a sextuple vedce

(A, X, Y, %, p,a0), where A = {ag,as1,---,apn }—is a finite

Combinational Scheme y Stack Memory set of statesay € A is an initial state X — {X17X27 N }
vl Voo Vo b, b is a finite set of input vectorsX; = (a1,---,21)i 1 €
v Mi; I D, by, {0,1,-},Y = {¥1,Y5, - - }—is a finite set of output veptors,
Code . OR Y; :_ _(yla"'ay_N)jayn G_{O,l,—},i/): AxX — Ais a
converter | MDy transition function, mapping a subsdt x X onto a subset

R of A. This function defines a next stagt + 1) € A

fixing of ¥ ..vy

I ST A depending on the current stat¢t) € A, and an input vector
e T s e X(t) € X:a(t+1) = ¢(a(t), X(¢)). ¢ is an output function,
Clock G o T s S which allows us to define output vectdrgt) from the sefy”.
M e HFSM can be described as follows:
Fig. 3. Basic structure of the HFSM. a(t+ 1) =v(a(t), X(2), 2(t), 6(t))
The same sequence of steps can be applied to other levels. Y(t) = p(a(t), X (1))
The total size of the stack is determined in such a way that Y (#) = p(a(?)).

the correctness of hierarchical control algorithm is assured.
When the execution of an HGS of levklis terminated, we However, because(t) andé(t) are calculated for the current
will perform the reverse sequence of steps to return back dtate «(¢), we can formally convert these equations to the
the interrupted HGS. In this case, we decrement the sp bguations considered above. As a result, we can describe a
activating a special micro operatigT . control algorithm by a set of HGS’s and then convert the
The stack memory is used to keep track of the calls of agyven description to a state transition table which we can use to
macro operations (logic functions). The code converter (CGynthesize the combinational scheme (see Fig. 3) by invoking
has an input register which stores values;gf.1, - -, yn+@, known methods of logic synthesis. After that, we can connect
whereG is the minimum number of bits required to represerthe combinational scheme to the predefined blocks such as the
the binary codes for the HGS'’s for a given control algorithr@C and the stack memory. Thus, we will design an HFSM
(see Section IV for details). The values @fr+1,---,yn+c Which behaves in accordance with the given description.
are the bits for the code to select the HGS to be executedThe stack memory is used to manage the hierarchy and
next. This code is converted to produce the first state dbes not affect transitions. When we want to generate a macro

I';,, which appears on the outpuf® D,,---,MDg. Here operationz, in a statea,,, we activate the increment micro
D, = CDy+MD,,---,Drp = CDr + MDp (+ is the operationy™. As a result, we select the next level of the stack
logic OR operation). and set the new register to the first stafeof z,. In this case,

If there are no transitions from one HGS to another, th&t) = a,a(t + 1) = as,2(t) = 2, = F.(a(t), X (¢)),F. is a
HFSM operates like an ordinary finite-state machine (FSM). ¢bnversion functiom(t + 1) = ¢(2(t)) = ¥(F.(a(t), X(1))).
it is necessary to call a new HAS, in order to perform either Finally, the next state(¢+1) depends on the current staig),
amacro operatioror a logic function the following sequence and a current input vectak (¢). When the macro operation
of actions will be carried out. The cod€(s;,) = (en1---eng) 2, is terminated, we generate the decrement micro operation
of theI';, is generated and stored in the input register of the . As a result we select the previous level of the stack which
block CC. Let us agree for simplicity th#(e,) is the binary contains the state,,. In this case, we perform an ordinary
code ofh andey,, € {0,1,-},9=1,---,G, —isadon’tcare transitiona(t) = a.,,,a(t + 1) = (a(t), X(t)).
value. The sp is incrementég™ = 1) and, as a result, a new It should be mentioned that a stack memory is also widely
register RG,.,, Of the stack memory will be selected as theised in the hardware implementation of subroutine calls in
current register of the HFSM. The previous regidi#¥ ..., 1 ordinary computers. However, in this case, it mainly keeps
stores the state of the HFSM when it was interrupted. Theack of the calls and it does not manipulate the currently active
code K (g1,) is converted to the code of the first state of thetates of any executable procedure. A program counter handles
HGST';, which is generated on the outpu¥$D,,---, M Dy these states. In case of an HFSM, the stack registers play
of the block CC (at this time&”D; = --.- = Cg = 0). Now an active role in the execution of the control algorithm, i.e.,
the HGST", is responsible for control from this point untilthey take part in state transitions. The technique considered
it is terminated. After termination df,, the micro operation allows the stack memory to be affected in the same manner
y~ = 1 is generated in order to return to the interrupted stat@s for an ordinary FSM, i.e., the hierarchical specification
As a result, control is passed to the state in which we called thees not require any explicit definition of the operations for
HGS I';,. The subsequent actions are performed in the saméierarchical implementation. The process of stack memory
manner as for an ordinary FSM. management is common for any HFSM and the same stack is

Outputs (CDy,---,CDg) and (M Dy,---,MDpg) affect shared among multiple communicating HGS’s. This process
required transitions in different periods of time. That is why wis hidden and is supported by local logic incorporated into the



SKLYAROV: HFSM'S AND THEIR USE FOR DIGITAL CONTROL 225

primary components (see Fig. 3) and reused for any controlThe synthesis includes the following steps:

circuit. 1) transforming the HGS’s to state transition table
It should be noted that compared to an ordinary FSM, 2) state encoding;

an HFSM has a more complicated synchronization. Actually, 3) combinational logic optimization and design of the final
there are many acceptable kinds of synchronization, and we  gcheme.
want to suggest just one of them [7]. The selection of the

proper HGS can qnly be_done In states containing ma arking the HGS'’s with labels; 2) recording all transitions
operations and logic functions. In states where a new H

. . tween the labels in thextended state transition tabland
is selected, all output€ D+, ---CDpg (see Fig. 3) are set to 3 b

. . . converting the extended table to ordinary form [2].
zero. In states where a previously called HGS is terminated, . R
In order to mark given HGS's, it is necessary to do the
all outputsM Dy, ---MDp are set to zero. The sp can only, X . . .
. . . following (see Fig. 1). The label, is assigned to the node
be decremented in a single specially allocated stateThe :
oy _ o Begin and to the nodeEnd of the HGSTI';. The labela;

outputsy™ andy~ can only be generated in different states; : :

o o2 . . IS assigned to all nodelSnd of the HGS'sIT's, ---,I'y. The
At the beginning, we provide initial settings of all registers t

zero. Fig. 3 illustrates possible waveforms for discrete syng pelsas, as, - - -,y are assigned to: 1) unmarked rectangular

signals according to the mode we have just considered. nodgs in all HGSS.; 2) inputs of _rhomb0|da| nodes_ with logic
functions, which directly follow either other rhomboidal nodes

or rectangular nodes with macro operations; 3)Bbeginnodes
. AN HFSM WITH VIRTUAL STATES of the HGS'’sI';,--.,I'y connected to a rhomboidal node

In Section Il, we assumed a preliminary binding betweevr\{!th logic .CO”d'“‘?’.“ and 4) the input of a rhombmdal node
ith a logic condition, which follows a connection from the

HGS’s in a given set. This means that all links betwee\g . )
different HGS's have been resolved during the process of t gg'; nOd? :_)'fGtge HG$;' Ililzepegtlng labels (apart from)
control-unit synthesis. The block CC has been programmed"f'oNI ereﬂ lab IS IS not aflowed. idered to be HESM
convert the codes((¢;),---, K(ey) to the initial states of ow, the labelsi, - --, ajr— are considered to be

the HGS'ST'y, - -, 'y In order to provide extensibility, flex- states. In order to build the extended state transition table, it
) ) N il .

ibility, and reuse of the scheme in Fig. 3, we have to excludd necessary to perform the following actions. Record all tran-

hardwired links between relatively independent components SFONS @mX (@, a.)as, wherean, € {az,---,an} (am #
the control algorithm, such as the HGS's. a0, @ # 1), a5 € {ao, -, amt; X(am;as) is a product

In order to provide links that we can alter, let us introducgf INPut variables (logic conditions) and logic functions,
virtual macro operations (logic functions) that overcome tHihich causes the transition from,, to a,. For any uncon-
problem of preliminary linkage by allowing the control unitditional transition, X (a,,,a;) = 1. Record all transitions
to define a macro operation during synthesis, and redefingitts» @(€2.)ar wherea, is the label for a node (for an input)
later if necessary, after the control unit has been design&which there is a direct connection from tBeginnode of
Borrowing some of the ideas of object-oriented programmirtl§® HGSI'1, a(ex) is a node (input of a node) containing the
[4], we can even consider the possibility of pure virtual macr@lémentey, a; is the label for a node, which starts the HGS
operations, which have not been implemented during synthef§i§ the element;,. Write down the micro operationg(a.. )
at all (however, we can implement them later). They a@nd macro operations(a,,) generated in the rectangular node
described by an HGS containing just two nodes followingparked with the labek,,,. Record the transitions considered
each otherBegin and End. in the extended table.

If we want to provide dynamic binding, the block CC will In order to convert the table from an extended to an ordinary
have the structure of random access memory (RAM). A virtuBrm, it is necessary to do the following. Encode the HGS’s
macro operatior:”, to be indicated by the superscriptis I'1,---,T'#. Suppose for simplicity that the cod&(I";,) of
described by a virtual HGS. It denotes that we are not abfee HGSI', is the binary value of. with minimal lengthG.
to predict and, as a result, to hardwire a direct link betwedha set”(a,,) contains a macro operatien, = z, € 7, then
z¢ and the proper HGS. Depending on a particular situatioih,has to be replaced with new output variables that gre
for a givenz?, we can execute one of many different HG®nd yn41,- - -, yn+c. We are only choosing variablegy.,,
Iy, T2,--.. A concrete binding is resolved after the HFSMor which ¢;, = 1 (the e, is a value of the bit numbey in
has been designed. In order to provide hardware support foe code ofl’,). Supposes,, is an input label of a rhomboidal
it, we have introduced an HFSM withirtual states A state is node. If the node contains a logic functién= &5, we must

The first step is divided into three sub steps, which are: 1)

called virtual if the hierarchical transition(s) from it have noaddy* and the respective variables, 1, -, yn+c to the
been fixed in the given HGS. set Y(a,). If an input of the rhomboidal node containing
a logic function®; has not been marked, we must ag
and the respective variablegy41,---,yv+a to the sets
IV. SYNTHESIS OF AN HFSM Y(as1),Y (aga), -+, where the stateg;,a o, --- have been

The problem of synthesis is as follows. For given contrahserted to mark the nodes that are the predecessors of the
algorithmA, described by the set of HGS's, construct the FSKonsidered rhomboidal node with the logic functién The
that implements\. Consider how to solve this problem for acalculated value of a logic function is stored in a specially
Moore machine. allocated storage element and then used as a normal logic
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condition. The final table describes the hierarchical transitions . 0
implicitly and can be visualized as an ordinary table. M, ;

In order to program the CC, we have to perform the follow- fpaal  ram ™ ————p Ouiput f—
ing steps. Record the transition from the stageassigned to ELgiE
the Begin node of the HGS';. For our example in Fig. 1, 1%
this is ap = a2(I'1). We put the name of HGS that is
the owner of the state in parentheses. Record all transition:
between different HGS’s. For our example in Fig. 1, they are
a3 = ag(rg), as = CL17(F3), a7 = alg(F5), ag = CL17(F3),
aro = ag(l's), a1z = a3(l's), ar7 = age(l'y), a1z =
a13(0's), a19 = a23(L¢). For all transitionsa,, = a.(L';)
considered above, conveR(I';) to a,. If we assume for inat
simplicity that the code ofaz, is the binary value of the T EEEE i

e

Control ‘ e
circuit .

index s with minimal length R = int log, M, then our
conversions are as followss(I';) = 001 = a> = 00010, clock [

K(I') = 010 = ag = 01000, K(I'3) = 011 = a;7 = 10001,
K(F4) = 100 = ays = 11010 K(Fr) =101 = a3 = Fig. 4. Hardware implementation for operations using a binary tree.

01101, K(I's) = 110 = a3 = 10111. For all a,,, = as(I';),
the block CC convert$((I';) to a,. Now we can synthesize Iy

the complete scheme of the HFSM using known methods ([1], G‘Cii" J
[2], etc.). =

0! Iy

Begin ] a, Begin ] a;

1
2| o
] as

V. VIRTUAL HGSs AND THEIR USE FORPRACTICAL [ Fd | & :

APPLICATIONS r, e

a, 2
Suppose that all elements of the $ét= {e1,---,ey} are ' [ Begin | a,

virtual, which means that all the given HGS's,---, 'y are a,

also virtual. As a result, we can call different versions of macro
operations (logic functions) from the same point of an HGS.
There are two acceptable and reasonable ways in which the , x_
binding of any modifiable connection might be established. - XI T l L
These are before run time and during run time. The first kind =" _=="" =" =
of binding is called static because it is established outside thel 3 3,1 |
scope of dynamic physical control. Applying static binding (Ena ] 2
limits the fu.ture potential_ for_ modificatior)s of predefint_aqtig_ 5. HGS's specifying the control unit in Fig. 4.
control algorithms. Dynamic binding establishes links during
run time. This means that while one HGS is executing, another
HGS might be either being modified or replaced. Any two Consider the set of HGS’s depicted in Fig. 5. The first
HGS'’s can be swapped by setting a new entry point in th#GS 'y can perform various operations (they are indicated
RAM-based CC. by zigzags in Fig. 5). When required, it calls an H&S
Let us have a look at an example that demonstrates i@ the virtual macro operatior;. The latter might have
advantages of the proposed architecture, such as capability§eyeral different implementations, such asT3)for finding
recursive calls, as well as the extensibility and flexibility. @ maximum value; 2J3 for finding a minimum value; and
Consider a binary tree whose nodes contain three fields tB€ '3 and1; for finding the ordered sequence of values from
are a pointer to the right child node, a pointer to the left chilaximum to minimum or vice versa. All HGSE; — I'; are
node, and a value (|et us say an integer or a pointer tor%UrSive. A Single |OgiC Conditi0m1 allows to find the nodes
string). The nodes are maintained so that, at any node, the fBfit do not point to other nodes. Micro operations: - -, ys
sub-tree contains only values that are less than the valudfaige the following actions in the datapath:
the node, and the right sub-tree contains only values that arg;; push data onto the local stack;
greater (see [10] for details). All nodes are accommodated iny» calculate an address of the left node from the currently
RAM (see Fig. 4) and we want to design hardware that can active node;

Yooty

[ End J 4

4,

be customized to solve one of the following problems: ys push data onto the output stack;
1) determining the maximum value; 14 form the address of the right node from the currently
2) determining the minimum value; active node;
3) sorting the values in descending sequence; ys pop data from the local stack and store it in the register;
4) sorting the values in ascending sequence. ye Ppop data from the output stack to external output

One potential implementation is shown in Fig. 4. (see Fig. 4).
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Fig. 6. (&) Binary tree for our example. (b) Example of contents of RAM

in Fig. 4. (c) Waveforms illustrating how to find the maximum value. (d)

Waveform illustrating how to find the minimum value. Fig. 7. (a) Waveforms illustrating the results of sorting values in ascending
sequence and (b) in descending sequence.

In order to define the size of the stack memory that is
used for the control circuit, we have to set some predefined
constraints for the datapath in Fig. 4, such as the maximum

Control algorithm b ik 504

permitted path from the root of the binary tree. If this is ~ ME; E y H6S:p HicSs

either problematical or unclear, it is reasonable to specify an o M :

exception, such as stack overflow, and an HGS that will handle s “ \ Bl

this exception (see the HGB. in Fig. 5). e s
The entry point ofl". is permanently attached to the level : e S

> of the stack. Any attempt to reach this level causes an
exception to be thrown, i.e., the HGS. will be automat-
ically executed. It might set a special indicator (see micro

Implementation

operationy,.; in Fig. 5) asking what to do. The higher level e, o
control system tests this indicator and responds through logic MEy ME,
conditions specified within the HG$'. (see rhomboidal o

nodes x.1, xe2, T3 in Fig. 5). This information is used
to perform actions that allow the system to cope with theg. 8. Dynamic modifications of the control algorithm.
problem, which, for instance, could be any of the follow-

ing:
1) set the stack to the initial state; within an FPGA, or reprogrammable, such as elements with
2) extend the stack and continue the task; a regular matrix structure. If we want to modify/replace any
3) switch to a new stack memory and restart the tasiGS (e.g., the right-hand-side bottom HGS in Fig. 8), we have

indicate an unrecoverable error, etc. to modify/replace the associated ME (i.e., we might replace

The scheme in Fig. 4 was described in the VHDL languag®lEy with ME,, in Fig. 8).
The results of the simulation for the binary tree, depicted in In the second case, the direct mapping considered above
Fig. 6(a), are shown in Figs. 6 and 7. Suppose that for giveas not been provided. However, we can implement all the
setl'y = {T'}, T3, T'3, '3} the desired HGS has to be selectetequired additional HGS'’s in hardware (see the right-hand side
during run time, depending on what operation we want. 18f Fig. 8). If we want to replace an HGS, we load a new entry
order to do this, we can dynamically modify the given contrgitate for the new HGS in the CC (see the right-hand side of
algorithm, i.e., the macro operatia#j will be associated with Fig. 8).
the appropriate HGS during the execution of the HIGS In Finally, the approach considered gives the following ad-
addition, we can extend the sBf on the fly if necessary by vantages. It enables flexibility and extensibility in the control
reconfiguring our scheme with the aid of a high-level contra@llgorithm and makes it possible for previously constructed
system. HGS’s and previously designed HFSM's to be reused [11].

In order to accomplish the required modification, we cakh provides an exception handling mechanism. At least two
use two different techniques. In the first case, during synthekiads of exceptions have to be taken into account: errors and
we provide direct mapping of HGS’s to modifiable element®load conditions. The latter enables us to support execution of
(ME’s) (see the left-hand side and bottom of Fig. 8) thatirtual algorithms, i.e., the capability to reload HGS’s during
are either reconfigurable, such as components implemented time.
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TABLE | as extensibilityand flexibility. The developed model directly
EXPERIMENTAL RESULTS supports top-down decomposition and allows recursive and
name ol 1 number of /N H | depthof | size incompletely specified calls. The entire control algorithm is
cxamples nodes (infout) stack described by a set of HGS'’s that can be reused. In general,
Sprin 34 3/4 5 4 44 each of themencapsulateshe control data and control func-
Kluw 39 8/14 3 4 59 tions. Encapsulation allows us to separate the purpose of an
PapGS 46 3/4 S S 62 operation (function) from its implementation. In other words,
?30“ g? 1(’]//2201 i e;“‘ 2; we can focus on what the operations do instead of on how
Gl_‘;‘n 7 12 3 3 97 to impiement '_[hem_. Providing control algorithms with virtual
T sched 75 1533 B 2 i1 operations (with virtual HGS’s) enables us to set up actual
ALU a2 105 3742 3 5 152 links dynamically during run time. This makes it possible to
Synch 120 14/9 15 4 165 construct dynamically modifiable control circuits. If a virtual
ALU al 189 14/49 20 3 261 operation is made pure, we obtain an incomplete specification,
AbGS 504 96/116 27 4 776 which essentially simplifies the testing and debugging of
sophisticated algorithms.
VI. EXPERIMENTAL TESTS

The proposed architecture of an HFSM (see Fig. 3) wafl]
described in VHDL and has been carefully examined fo
different control algorithms (we used the V-system VHDL[2]
analyzer). The results of the test have proven that the targ
requirements of the HFSM, such as extensibility, flexibility
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